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COULOMB FRICTION, PLASTICITY, ADM LIMIT LOADS 1

by D. C. Drucker 2

Abstract

Additional attention is given to the somewhat subtle

but extremely important difference between Coulomb friction and

the apparently corresponding resistance to plastic deformation.

It is shown that the limit theorems previously proven for

assemblages of perfectly plastic bodies do not always apply

when there is finite sliding friction. Theorems are developed

which relate the limit loads with finite Coulomb friction to the

extreme cases of zero friction and of complete attachment, and

also to the case where the frictional interfaces are "cemented"

together with a cohosionless soil.

-- -- -- -- ---- -----------------------------

1 The results presented in this paper were obtained in the course
of research sponsored by the Office of Naval Research under
Contract Nonr-35801 with Brown University.

2 Professor of Engineering, Brown University, Providence 12, R. I.



Sliding Friction vs. Plastic 'Resistance.

it was pointed out previously3 that the similarity

between the stress-strain relation for a rigid- or elastic-

perfectly plastic material and the force-displacement relation

for the Coulomb friction case, Fig. 1, may be misleading, The

essential feature may best be stated in mechanical-thermodynamic

terms for an assemblage of elastic-plastic bodies in equilibrium,

Fig. 2. If either the attachment is complete or if all coef-

ficients of friction are zero, no work can be extracted frnem

the bodies and any equilibrium system of forces acting upon them,

In other words, ther, is no way in which the bodies plus the

forces can act as an engine in this thermodynamic sense. They

can, however, if a coefficient of friction is finite3 .

This point of view is made clearer and less abstract

by a comparison between Coulomb sliding friction and shearing

on a plane through a Coulomb cohesionless soil obeying the

generalized plastic potential laws, Fig. 3. The relation between

the normal vertical force N and frictional horizontal force

F in each case may be writtin as F = V.N. The displacement

picture, however, is fundamentally different The block in

the friction case slides in the direction of the force F. It

also moves up in the case of shearing of soil because of the

volume expansion which accompanies shear if the generalized plas-

tic potential relations are followed The displacement or

D..Drucker,, "Somre Implications of Work-Hardening and Ideal
Plastic.ty", Quarterly of Applied Mathematics, v. 7 (195O)pp. 411-418.

ID.C. Drucker and W. Pragcr, "'Soil Mechanics and Plastic Analysis
or Limit Design", Quarterly of Applied Mathematics, v. 10 (1952)
pp. 157-.165.



velocity vector makes an angle y with the horizontal, where
-l

S= tan jL is the angle between the straight line env elope to

the limiting Mohrs circles and the negative d axis. Work is

done, therefore, against the downward force N. It is this

negative work, which prevents elastic-plastic bodies and the

system of forces acting on them from acting as an engine while

apparently similar frictional systems can.

Limit Theorems.

The two major limit theorems516 in a crude sense state

that an assemblage of elastic-perfectly plastic bodies, with

zero friction or complete attachment at each interface, will on

the one hand do the best they can to distribute stress to avoid

collapse and on the other will recognize defeat if any kinematic

collapse mode exists. This anthropomorphic approach is refined,

when geometry change is negligible, in the actual statement of

the theorems proved as:

1. Collapse will not occur if any state of stress can be

found which satisfies the equations of equilibrium and the boundary

conditions on stress and which is "below yield" at each point.

2. Collapse must occur if for any compatible flow pattern,

considered as plastic only, the rate at which the external forces

do work on the bodies equals or exceeds the rate of internal

dissipation.

3. Collapse takes place at constant stress so that strain

rates are purely plastic.
----- -- -- -- -------------------- - - -- - -- -- -- -- -- ---

5 DC. Drucker H.J. Greenberg, W!. Prager1 "The Safety Factor of
an Elastic-Plastic Body in Plane Strain", Journal of A pplied
Mechanics, v. 18, Trans. ASME, v. 73 (1951) pp. 371-378.

6 D.C. Drucker, H3J. Greenberg, W. Prager, "Extended Limit Design
Theorems for Continuous Media", Quarterly of Applied Mathematics,
v. 9 (1952) pp 381-389.
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Now suppose that the coefficient of friction is finite

and non-zero on at least one of the interfaces S of Fig. 2,

Is the system still intelligent enough to distribute the stress

to avoid collapse, and are the theorems still valid? Trouble

immediately appears in the upper bound Theorem 2. The rate of

internal dissipation cannot even be calculated in all cases because

frictional dissindtien is not determined uniquely by the flow

pattern. It dcpcnds not alone upon relative displacement rates

but also on the normal pressure on the frictional interface a

quantity which will often not be known. This type of difficulty

does not appear in the lower bound Theorem 1. It might seem

plausible to assume that the theorem is valid with the additional

requirement that the state of stress not violate the friction

condition at the interface as well as staying below yield. A

simple example shows this hopeful intuitive approach to be in

error.

Illustrative Examiples.

Fig. 4 a represents two rigid blocks, the heavy horizontal

one is balanced on a rough lodge while the light small one is on

an inclined plane with friction angle y and inclination a. The

contact surface between the blocks is at a slightly flatter angle

P than the plane and will be considered frictionless. There need

be no force between thŽ blocks and yet a largo force N could be

carried between the blocks without violating equilibrfumFig. 4b.

If y > a-P , such a force is stabilizing. Clearly, howevor,

if a > p the block will slide down the plane and no stabilizing

force will hc developed. On the other hand, if the sliding was

really plastic shearing as for a soil, then the incipient velocity



vector V would noint away from the inclined plane at an angle

q as in Fig. 4c. The large block would have to lift up and the

force N would indeed be mobilized to prevent sliding down the

plane. A modified Theorem 1 is thus seen to be improper for

the friction case but is againverified for the "plasticity"
problem.

The problem of Fig. 4 might seem tricky and exceptional

because the little block is not really confined by the large one

and because the bodies are rigid. A more elaborate example is

probably needed to demonstrate the point properly. The punch or

equally well the uniform pressure example of Fig. 5 has special

dimensions to avoid calculations but is otherwise a good repre-

sentative plane strain problem. The interface UMNW between

the upper arch-shaped block and the lower support is supposed to

have an extremely large but finite friction angle. The yield

stress in shear will be called k and either the Mises or Tresca

yield condition is employed.

Fig. 5a shows a discontinuous stress solution passing

through the interface as though the two bodies were one. This

07is the often used 300 wedge solution slightly modified7 . In the

equilateral triangle region ABC the principal stresses are com-

pressivo and of magnitude 3k in the vertical direction and k

horizontally. In the sloping region BCDE the stress is 2k

parallel to BE and zero in the perpendicular direction. Region

DFE has principal stresses +k and -k. The shearing stress,

if any, and the normal traction on the planes of discontinuity

Yp. G. Hedge and W. Prager, "Theory of Perfectly Plastic Solids",
John Wiley & Sons, 1951, Section 26.
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BC, DE, HE, HD are continuous across the planes.

Both compressive and shearing tractions d and t in

magnitude which are easily calculated, will act on the interface

U14NW. The coefficient of friction V is assumed large enough

so that T<ULo. Therefore, the stress field of Fig. 5a multiplied

by a number ever so slightly less than unity will be "below yield"

everywhere and does not violate the friction condition. The total

force P per unit dimension perpendicular to the paper can be

made as close to 3kb as desired.

The question of whether or not the bodies are able to

adjust themselves in this static manner is answerdd by the possible

discontinuous rigid-block kinematic collapse pattern, Fig. 5b.

Block ATB is taken to more vertically downward with velocity

V requiring ATMU and BTNW to move at 45 with velocity V/iVr

so that separation occurs on MU and NW. Block MTN is

staticnary. The velocity discontinuity on the surfaces of sliding,

BTM and ATN each of length bV2, is V/Ir. The rate of energy

dissipaticn per unit perpendicular dimension is just

2-C , oe4 • W/ff) = 2kbV because in this permissible virtual

displacement pattern there is separation along the friction surfaces

MU and IW and they contribute nothing. Equating the rate of

work of the external forces PV to 2kbV gives the upper bound

and in this case correct result for Fig. 5, P = 2kb, and not

3~ h.

The intuitive limit theorem on the inherent intelligence

of the material is thus seen to be incorrect for finite and non-

zero friution. Again, substitution of an elastic-plastic "soilt

for the Coulomb friction interface fixes matters. Surfaces MU

and MiN do increase the energy dissipation and the value 3kb
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is a proper lower bound if the angle q is large enough.

It might be thought that the separation counter-examples

given in this section are unfair. However, it is precisely

the freedom in the friction case to slide with an arbitrary

normal stress on the surface of sliding and therefore an

arbitrary dissipation which prevents the application of the

"intuitive theorems". Sliding at zero normal stress and actual

separation are essentially the same. An angle of 1+5 instead of

44 0in Fig. 5 would not really change the result.

Friction Theorems.

The question now arises as to what can be said about

limit loads for assemblages of bodies with frictional interfaces.

Two theorems seem intuitively obvious;

A. Any set of loads which produces collapse for the condi-

tion of no relative motion at the interfaces will produce

collapse for the case of finite friction. No relative

motion is a more inclusive term than infinite friction

because separation is not permitted.

B. Any set of loads which will not cause collapse when all

coefficients of friction are zero will not produce

collapse with any values of the coefficients.

Although at this stage intuition may not seem completely

reliable, the theorems are in fact true. Their proof follows in

part the technique employed in developing the limit theorems for

plastic bodies6 The most important tool is the theorem of

virtual work

A TiudA + ý i 4uijv =I 0ijSij dv + I TiAuidS
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8in which the sumnation convention is employed8. There is no

necessary tie between the equilibrium system of surface tractions
* *

Ti, stresses oij, and body forces Fi, and the compatible

system of velocities ui, strain rates EiJ and velocity dis-

continuities A ui. The surface area A of the assemblage of

bodies of volume V does not include the frictional interfaces

S. For convenience of description, the velocity will be assumed

continuous except across S. The term T f

discontinuities in the material is omitted but this does not

actually restrict the generality of the result. 5 ' 6

Use will also be made of the properties of the yield

surface f(djA) = k2, Fig. 6. The rate of dissipation of energy

per unit volume, D = i P is uniquely determined by the

plastic strain rate P The "vector" i Fig. 6, is normal
ip. s a 

I 

nJ 

"

to the yield surface at a smooth point or lies between the normal

to the surface at adjacent points to a vertex or corner. Further-

more, the surface is convex so that the dot product of the pla3tic

strain rate "vector" with any stress vector to a point OCj inside

the surface, f(dij,) < k2, cannot be as large as D.

- ) * p(2

Ej < D j

N N
To prove Theorem A, assutme that a set of loads Ti, F1

produces collapse when all relative motion is prevented at the

interfaces S (bodies welded together). This type of composite

body can be analyzed by the established limit theorems which state

A TidA + vFiuidv > S ijdv (3)

Reference 7, Chapter 8, As an examule,

0 d ij *0x x + yC + + Uxy~xy + T yz~yz +zxZXLijsj YX~ , Z 4, XYX Y y ZY
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•N
and lJ is purely plastic,

Ni (elastic) = 0 (4)

For Theorem A to be false, there must exist some equilibrium

state of stress d J such that f(ojiJ ) < k2 . Using the virtual
•N • N

work Equation (C), with uij siJ as the compatible state,

• ATI•dN' N + F dlvN. =I A" Nidv + TIAAu ds()

i i I i % - 'jA v 1 F v a A

However, Nu = 0 because the velocity solution represents no
A' N" N

relative motion at S and, from Inequality (2), d < J lJ

Equation (5) is, therefore, in contradiction to Inequality (3)

and Theorem A can not be false.

The proof of Theorem B starts from the given set of
0 0 0

loads Ti, Fi and stresses 0, which do not cause collapse

with z = 0. Next suppose that collapse can occur for L> 0

ýB B 4with a collapse field uD, ý, AB and stress field dm B

Virtual work Equation (1) becomes

F 9 Tr~d +ý 0j B~~v J a 0 OB
' A + v v i ii J5 TituidS (6)

and the collapse condition is

TiuidA + FiŽUiV > Fij1 1dv + T TiuidS (7)
A v v fS

Conditions (6) and (7) are incompatible and Theorem B cannot be

BO B O> B B "Bfalse because (i5sij > Pijil, Titui is a frictional dissipa-

tion and, therefore, zero or positive, and TAui is zero or

negative. The last statement follows from the fact that Ti

is normal to S at each point and is oomprcssive while AL? isis
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a relative tangential displacement, and possibly a separation as

well, but not an overlap.

"The friction theorems A and B have thus been proved for

all stable convex yield functions. They occasionally enable the

limit load to be computed quite precisely for finite non-zero

friction. The well known two dimensional punch problem for a

Prandtl-Reuss or a Mises material provides such an example. Two

solutions are available for upper bound computations. One by

Prandtl 9 Fig. 7a, contains a rigid region which acts as an ex-

tension of the punch; there is no relative motion between the

punch and the contact area. The other by Hill 1 0 , Fig. 7b, assumes

zero friction and appreciable slip does take place. Both solu-

tions give the same answer for the average pressure, p = (2+n)k

Vkre k is the yield strcss in shear. A lower bound solution

of 5k has been obtained 3. Therefore, the limit pressure is

between 5k and 5.14k for all possible values of the coefficient

of friction.

It will often be found, however, that Theorems A and

B do not provide very close bounds. The concept of the plastic

cohesionless soil interface, already discussed in considerable

detail, may then be of furthei help in the following theorem.

9L. Prandtl, "IUaber die Haerte plastischer Koerper", Nachrichten
von der Koeniglichen Gesellschaft der Wissenschaften zu
Goettingen, iiathematisbh-physil-alische Klasse (1920) pp. 74-85.

1OR. Hill "The Plastic Yielding of Notched Bars under Tension"
uarterly Journal of Mechanics and Applied N-athematics, v.

(1949) pp. 4o-)-2.

R. T. Shield and D. C. Drucker, "The Application of Limit Analy.

sis to Punch Indentation Problems", to appear in Journal of
Applied Mechanics.
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C. Any set of loads which wilil not cause collapse of an

assemblage of bodies with frictional interfaces,, will

not produce collapse when the interfaces are "cemented"

together with a cohesionless soil of friction angle 9 =

aretan o.

The proof of Theorem C follows essentially from the

observation that the state of stress in the friction case satisfies
_ 2the conditions f(Oj3) < and If T poIat impending collapse.

A safe state of stress exists, therefore, for the soil case when

collapse aoes not occur in the friction problem.

Concluslons

The limit load for an assemblage of bodies with

frictional interfaces is bounded below by the limit load for the

same bodies with zero friction on the intcrfacGs. It is bounded

above by the limit load for no relative motion at the interfaces

and also by the limit load for the same assembla&. cemented at

the interfaces by a cohesionloss soil. Limit theorecis applicable

to those bounding problems do not apply generally,



AIJ.-3512

F F

W V'o, e) A0 'r -'0" 4 el .1 1 F1

FIG. i. APPARENT ANALOGY BETWEEN FRICTION AND PLASTICITY

GI

Fit-G. 2. AN ASSEMBLAGE OF 810DIES irN .QU~iLiEfrW%'mm



IN_

F &N

FRICTION

N

11 7ý11 ton p.

. . ..- _ .: .:4..'.'..'"*...:*:. '.*: . .. ____________ __________

SOIL

FIG. 3, DIFFERENCE BETWEEN COUJLOMB SLIDING AND

COULOMB SHEAR



"(b)

'NN

v soic()

V-/ FRICTION

FIG. 4. A COUNTER-EXAMPLE- RIGID BODIES



b 0 -6w/

I I ZERO \

IP

• v ,• : v(b)

FIG, 5, TWO D IMENS•ONA. PROBLEM WI:TH E•LASTIC,-PLASTIC

1B094ES (a)AN EQUILIBR•IUM .SO~iTION tb) A VEUOCITY (KINEMA~iC•
SO.UTION INVOLIING SEH RATON



All .Till

i G I N1

/ I

FIG. 6. THE YIELD SURFACE

PUNCH 4

(a ) (b)
FIG. 7. (a) PRANDTL AND (b) HiLL 50LUTIO.W TO PUNICH PROBLE2M



Reprodkmed bv

'armed Services Tech nical a formation opgen,
DOCUMENT SERVICE CENTER

KNOTT BUiLDiNG, DAYTON, 2, OHIO

A n

CqASSlFIFBDA-F

11,,, 
Vfm 

A mmso


